Hypergraph Partitioning through Vertex Separators on Graphs

نویسندگان

  • Enver Kayaaslan
  • Ali Pinar
  • Ümit V. Çatalyürek
  • Cevdet Aykanat
چکیده

The modeling flexibility provided by hypergraphs has drawn a lot of interest from the combinatorial scientific community, leading to novel models and algorithms, their applications, and development of associated tools. Hypergraphs are now a standard tool in combinatorial scientific computing. The modeling flexibility of hypergraphs however, comes at a cost: algorithms on hypergraphs are inherently more complicated than those on graphs, which sometimes translate to nontrivial increases in processing times. Neither the modeling flexibility of hypergraphs, nor the runtime efficiency of graph algorithms can be overlooked. Therefore, the new research thrust should be how to cleverly trade-off between the two. This work addresses one method for this trade-off by solving the hypergraph partitioning problem by finding vertex separators on graphs. Specifically, we investigate how to solve the hypergraph partitioning problem by seeking a vertex separator on its net intersection graph (NIG), where each net of the hypergraph is represented by a vertex, and two vertices share an edge if their nets have a common vertex. We propose a vertex-weighting scheme to attain good node-balanced hypergraphs, since NIG model cannot preserve node balancing information. Vertex-removal and vertex-splitting techniques are described to optimize cutnet and connectivity metrics, respectively, under the recursive bipartitioning paradigm. We also developed an implementation for our GPVS-based HP formulations by adopting and modifying a state-of-the-art GPVS tool onmetis. Experiments conducted on a large collection of sparse matrices confirmed the validity of our proposed techniques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partitioning Hypergraphs in Scientific Computing Applications through Vertex Separators on Graphs

The modeling flexibility provided by hypergraphs has drawn a lot of interest from the combinatorial scientific community, leading to novel models and algorithms, their applications, and development of associated tools. Hypergraphs are now a standard tool in combinatorial scientific computing. The modeling flexibility of hypergraphs however, comes at a cost: algorithms on hypergraphs are inheren...

متن کامل

Hypergraph Models for Sparse Matrix Partitioning and Reordering

HYPERGRAPH MODELS FOR SPARSE MATRIX PARTITIONING AND REORDERING  Umit V. C ataly urek Ph.D. in Computer Engineering and Information Science Supervisor: Assoc. Prof. Cevdet Aykanat November, 1999 Graphs have been widely used to represent sparse matrices for various scienti c applications including one-dimensional (1D) decomposition of sparse matrices for parallel sparse-matrix vector multiplic...

متن کامل

A Nested Dissection Approach to Sparse Matrix Partitioning for Parallel Computations

We consider how to distribute sparse matrices among processes to reduce communication costs in parallel sparse matrix computations, specifically, sparse matrix-vector multiplication. Our main contributions are: (i) an exact graph model for communication with general (two-dimensional) matrix distribution, and (ii) a recursive partitioning algorithm based on nested dissection (substructuring). We...

متن کامل

Hypergraph Partitioning-based Fill-reducing Ordering

A typical first step of a direct solver for linear system Mx = b is reordering of symmetric matrix M to improve execution time and space requirements of the solution process. In this work, we propose a novel nesteddissection-based ordering approach that utilizes hypergraph partitioning. Our approach is based on formulation of graph partitioning by vertex separator (GPVS) problem as a hypergraph...

متن کامل

A Serial Multilevel Hypergraph Partitioning Algorithm

The graph partitioning problem has many applications in scientific computing such as computer aided design, data mining, image compression and other applications with sparse-matrix vector multiplications as a kernel operation. In many cases it is advantageous to use hypergraphs as they, compared to graphs, have a more general structure and can be used to model more complex relationships between...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1103.0106  شماره 

صفحات  -

تاریخ انتشار 2011